2 Thermodynamics

2.1 Fundamental laws

The first law of thermodynamics is a statement of
the principle of conservation of energy. For a
system of constant mass the first law may be stated
thus:

The amount of work done on or by a system is
equal to the amount of energy transferred to or
from the system.

In other words energy cannot be created or de-
stroyed during a process, although it may change
from one form of energy to another.

The second law of thermodynamics is more ab-
stract, but may be formulated thus:

Heat cannot, of itself, pass from a colder to a
hotter body.

This means that energy exists at various tempera-
ture levels and is available for use only if it can
move from a higher to a lower level.

2.2 Ideal gases

An ideal gas is one that follows the perfect gas
equation without deviation.

Boyle’s law states that, if the temperature is held
constant, the product of pressure and volume will
be constant; or, in other words, the absolute press-
ure of a gas changes in inverse proportion to the
volume

piVi=p2Va

If the volume is halved, the pressure is doubled.
A telescopic gas-holder is a constant pressure con-
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tainer. The volume of the gas-holder varies with
changes in gas temperature or quantity.

The cylinder in figure 1:8 contains gas molecules.
When the piston is pushed down, the gas is forced
to occupy a smaller space. The gas exerts more
force on each square centimetre it touches and gas
pressure increases. Lf the cylinder holds one cubic
metre of air at an effective pressure of 1 bar, it has
an absolute pressure of 2 bar. If the gas is compress-
ed to half its original volume, with the temperature
constant, the new absolute pressure of the gas will
be 4 bar.



Charles’ law states that the volume of a gas changes
in direct proportion to changes in absolute tem-
perature.

VT =V,/T, or AV=V,/T, - AT

Example: If 10 cubic metres of an ideal gas is heated
from +15°C to +44°C at constant pressure, what is
the new volume?

The absolute temperature T,=15+273=288 K
The absolute temperature T,=44+273=317 K
Applying Charles’ law

10/288=V,/317

Answer:

V,=10-317/288=11 cubic metres.

If the gas had instead been cooled from +15°C to
—14°C the new volume would have been:

T,=15+273=288 K
T,=—14+273=259 K
10/288=V,/259
V,=10-259/288=9 cubic metres.

Pressure, volume and temperature are thus gas
variables. When one of these is changed, at least
one other variable is influenced.

Another way to describe the relationship between
pressure, volume and temperature is to say that
p-V|T always has the same valte for a given
quantity of a gas.

Example: 5 cubic metres of air is compressed from
atmospheric pressure to an effective pressure of 7
bar. The intake temperature is +20°C and the dis-
charge temperature is +120°C.

What is the volume at the discharge flange?

p1=1 bar (absolute)

p>=7+1=8 bar (absolute)

T,=20+273=293 K

T,=120+273=393 K

p1ValT,=ps-V,[T,

1-5/293=8-V,/393

Answer:

V,=1-5-393/(293-8)=0.84 cubic metres.

Amontons’ law states that the pressure of a gas, at
constant volume, varies directly with the absolute
temperature:

palp=T,/T, or
p/T,=p,/T,=constant

Dalton’s law states that the total pressure of a mix-
ture of gases is equal to the sum of the partial press-
ures of the constituent gases. The partial pressure
is the pressure each gas would exert if it alone oc-
cupied the volume of the mixture at the actual tem-
perature.

Piot=P1+P2tpa+..... *p,

As long as the constituent gases do not chemically
react with each other, they act quite individually
without regard to each other’s presence.

Dalton’s law applies during the compression of any
gas mixture.

When wet air is compressed, the compressor han-
dles both the air and the water-vapour. Air, beinga
mixture of nitrogen, oxygen, argon, etc, has a total
pressure equal to the sum of the partial pressures of
each component. However, because of the negli-
gible variations in the composition of dry air it may
be considered as a single gas. After compression,
partial pressures are used to determine moisture
condensation in inter- and aftercoolers. When the
dewpoint temperature of any component is
reached, the space occupied is said to be saturated
with that component.

The atmospheric pressure is the sum of the partial
pressure of dry air and the partial pressure of the
water-vapour. Suppose a quantity of atmospheric
air at +20°C is saturated with water-vapour. In this
state the air contains all the moisture it can hold at
this temperature. Any added water-vapour would
condense. Ifthe total atmospheric pressure is 1.013
bar, the pressure exerted by air alone must be the
difference between 1.013 bar and the water-vapour
saturation pressure at +20°C. Table 2:17 shows
that the saturation pressure of water is 23.37 mil-
libar at +20°C. So the absolute partial pressure of
the dry air is 1.013—0.023=0.990 bar. Partially
saturated air contains less than the maximum
amount of water-vapour that can be held. The
moisture content is often expressed as relative
vapour pressure. If the atmospheric air at +20°C
has a relative vapour pressure of 65 per cent it holds
only 0.65 as much water as it could.

The actual vapour pressure is thus 0.65-23.37 = 15
millibar. The absolute partial pressure of the dry air
is then 1.013—0.015=0.998 bar.

Amagat’s law states that the volume of a mixture of
gases is equal to the sum of the partial volumes
which the constituent gases would occupy if each
existed alone at the total pressure of the mixture.

Avogadro’s law states that equal volumes of all
gases under the same conditions of pressure and
temperature contain the same number of mol-
ecules.

Since one mole of any substance, by definition,
contains the same number of molecules, the molar
volume of all gases should be the same. The
number of molecules in one mole is called
Avogadro’s number. N=6.022 5710 mol™.
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Poisson’s law states that, for a process without any
heat exchange with the surroundings, the relation-
ship between pressure and volume follows the
equation:

PV CelCv=py: ViCplCv

The ratio of specific heat-capacities cpley is fairly
constant at low pressures.

It is usually designated .

xk=cplcy

For mono-atomic gases x=1.66
For di-atomic gases x=1.40 (air)
For tri-atomic gases  x=1.30

«x varies with pressure and temperature (2:1).
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Diagram 2:1 The isentropic exponent for air

2.3 The general gas law

Combining Boyle's law and Charles’ law gives
p-V/[T=constant

The value of the constant depends only on the gas
and on the system of units chosen.

Avogadro’s law states that an equal number of
molecules of any gas will be contained in a given
volume at the same temperature and pressure.
The fact that the volume of a mole at some fixed
temperature is the same for any gas is very signifi-
cant when factored into the relationship obtained
from Charles’ and Boyle’s laws.

If v,, is the volume of one mole of gas at the refer-
ence temperature and pressure, then for one mole
of any gas

@/Teet V=R
R=8314 J/(kmol-K)

This special value of R is independent of the gas,
since v, is the same for all gases. The constant Ris
termed the universal gas constant and for any gas
that obeys Charles’” and Boyle's laws

oove=R-T

For engineering work, it is usually desirable to
convert the molar specific volume to more con-
venient units of volume per unit mass. This is
equivalent to converting the unit of mass from mole
to kilograms. As stated in the description of a mole,
the number of mass units in a mole is numerically
equal to the molar mass of the gas, regardless of the
system of units. Therefore it follows that

pV=m-R'T

or if we introduce the specific volume
v=V/m mlkg

pv=R-T

with R=R/M

where p  is the absolute pressure in Pa

is the volume in m?

is the mass of the gas in kg

is the universal gas constant in
J/(kmol- K)

is the absolute temperature in K
is the gas constant in J/(kg- K)
is the molar mass in kg/kmol

ME <

z=a



Example: For air with M=28.96 kg/kmol the gas
constant is

R=8314/28.96=287.1 J/(kg K)

If the gas pressure instead is expressed in bar, the
general gas law reads:

10°-p:V=m-R:T or 10°-p-v=R-T.

2.4 Real gases

2.4.1 Critical conditions

There is one temperature above which a gas will
not liquefy with pressure increase, no matter how
great. This is the critical temperature. The press-
ure required to condense a gas at the critical tem-
perature is the critical pressure.
Forairt.,=—140.63°C and p ,=37.66 bar absolute.
For other gases see table 24:1.

For mixtures of gases that do not combine chemi-
cally, the critical constants are equal to the sum of
the critical constants of the individual gases in the
mixture, multiplied by their respective volume
fraction.

temperature
c
-50

~100

-150

-200

entropy

Diagram 2:2 Temperature-entropy diagram for air.
“A’is the critical point

2.4.2 Compressibility factor

At high pressures and temperatures, as well as in
regions near the critical point where the gas con-
denses to the liquid phase, variations from the ideal
p-V-T relationship occur. There exist numerous
equations of state that compensate for the devi-
ation from perfect gas behaviour. However, a
simpler method is to use the compressibility factor,
Z=p-vI(R-T).

The compressibility factor is determined experi-
mentally and plotted as function of pressure for
lines of constant temperature.

But instead of using such diagrams for each gas it
has been found that by replacing the actual press-
ure and temperature by ratios of these values to the
pressure and temperature at the critical point, the
compressibility curves for practically all gases fall
together with but small divergence (2:3, p 36).
These ratios are called reduced quantities,

pR=p/pcr and TRinTcr

where p, and T, are the critical values for the gas.
Diagram 2:3 shows the compressibility factor in
generalized form.

The volume after polytropic compression of areal
gas is:

V2:V1'(PJP2)”” 2z,

The work spent on polytropic compression of areal
gas is:

W=p.-Vi-rln=1)-[@alp )" =11 (Z\+Z)(2Z4)
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Diagram 2:3 The generalized compressibility factor
Note that the compressibility factor scale is distorted to increase readability

2.5 Properties of gas mixtures

The composition of a gas mixture is given in one of  The volume ratios are equal to the mole ratios, be-
the following ways: cause all moles occupy the same volume at

O mass ratio (x) standard conditions.

O partial pressure (p))

x;=m;/m Zx;i=1
1 . Zpi=p
where x; is the mass ratio . ' _ .
m; is the mass of constituent “i” where p; is the partial pressure of constituent *“i”
m is the total mass of the mixture. p s the total absolute pressure of the

i mixture.
O volume ratio ()

yi=VU’V Zy-l= 1
where y; is the volume ratio
V, is the partial volume of the con-

stituent “i”’
V s the total volume of the mixture.

L



The mean molar mass of the mixture is given by:

M=3(;-M;) or
M= I/Z(XU"M,) or
M=Z(p;-Milp)

where M is the mean molar mass of the mixture
M, is the molar mass of constituent ““i”
p s the total absolute pressure of the
mixture
p; s the partial pressure of constituent
x; is the mass ratio
y; Is the volume ratio.

T3l
1

The mean gas constant of the mixture is given by:

R=8314/M or
R=in'R-l or
R=1/Z(yi/R))

where M is the mean molar mass of the mixture
R is the mean gas constant of the
mixture
R; is the gas constant of constituent **1”
x; is the mass ratio
y; is the volume ratio.

The mean dynamic viscosity in the temperature
range —50° to +25°C and for effective pressures up
to 10 bar is given by:

n=0y-M,'"? +772'.V2'Mzm +. ey M)
/(}}1_M1112 +y2,M11.'2 +---:Yi'Mi”2)

wheren is the mean dynamic viscosity
n; is the dynamic viscosity of con-
stituent *“1”
y; is the volume ratio of constituent

(1341}

M, is the molar mass of constituent ““i”.

(341}
1

The mean specific heat-capacity at constant pressure
is given by:

cp=2(x;"cpi) O

Cp= IIM'E()’;'Mi'CPi)

where M;

cen
1

is the molar mass of constituent

is the mean specific heat-capacity at

constant pressure of the mixture

¢y is the specific heat-capacity at constant
pressure of constituent i’

x; 1s the mass ratio

y; is the volume ratio.

Cp

The mean specific heat-capacity at constant volume
is given by:

cy=c,—8.314/M (ideal gas)

where ¢, is the mean specific heat-capacity at
constant volume of the mixture
cp is the mean specific heat-capacity

at constant pressure of the mixture.
The mean isentropic exponent is given by:
Kk=cylc, (ideal gas)
Example: Determine the gas constant and the
isentropic exponent of a gas mixture with the com-
position:
methane (CH,)  81.9 per cent by volume
ethane (C,Hy) 8.1
propane (C;Hg) 5.3

nitrogen (N,) 4.7
100.0 per cent (2:4)
Answer:
The mean gas constant of the mixture is:
R=8314/19.24=432.1 J/(kg-K)
Table 2:4
Constitu- [ Molar | Specific | Volume
ent mass heat- ratio
capacity
cp;
Mj kd/(kg-K) i yirMi yiMicpi
CH, 16.04 2.207 0.819 13.14 29.00
C.H, | 3007 1.715 0.081 2.44 4.18
CiHy | 44.09 1.627 0.053 2.34 3.81
N, | 2802 1.039 0.047 1.32 1.37
- - - 1.000 |M=19.24 |M-cp=38.36

The mean specific heat-capacity at constant press-
ure is:

c,=38.36/19.24=1.995 kJ/(kg-K)

The mean specific heat-capacity at constant vol-
ume is:

cy=1.994—-8.314/19.24=1.562 kl/(kg-K)
The isentropic exponent is:

x=1.994/1.562
x=1.28



2.6 Thermodynamic processes

2.6.1 The isobaric process

This takes place under constant pressure. To
change the volume from state | to state 2, heat must
be removed. The temperature change is propor-
tional to the volume ratio.

T,—T=T;-(Vo/V:—1)

The amount of heat to be removed is:

(T—T5) J

is the specific heat capacity at constant
pressure in J/(kg- K)

m is the mass in kg
T s the absolute temperature in K.

QIZ':Cp'm

where ¢,

2.6.2 The isochoric process

This takes place under constant volume. To raise
the pressure from state 1 to state 2, heat must be
added. The temperature change is proportional to
the pressure ratio.

T,—T=T(psfp,—1)

The amount of heat to be added is:
grz=cym-(T,—Ty i

where ¢, is the specific heat-capacity at
constant volume in J/(kg- K)

m is the mass in kg

T is the absolute temperature in K.

2.6.3 The isothermal process

This takes place under constant temperature. To
compress the gas from state 1 to state 2, heat must
be removed to keep the temperature constant. The
pressure change is inversely proportional to the
volume ratio.

pa—pi1=p1 V4/V,—1)

The amount of heat to be removed is equal to the
work of compression

G12=p. V105 In (V{/V,) J, or
q12=R-Ty-m-In(p,/p,) J
where p  is the absolute pressure in bar

V is the volume in m3
m is the mass in kg
R is the gas constant in J/(kg- K).
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Diagram 2:5 The isobar
p
P2 Tz 2
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v
pn Ty 1
V.=V, v
Diagram 2:6 The isochor
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Diagram 2:7 The isotherm



2.6.4 The isentropic process

This takes place without any heat exchange with
the surroundings. Such a process follows Poisson’s
law.

Pz/PF(VJVz)K or
Palp =TT )ritl)

il

- isentrop

. isotherm

Py

Vs Vi Vv

Diagram 2:8 The isentrop

2.6.5 The polytropic process

The isotherm is based on complete heat exchange
with the surroundings. The isentrop is based on no
heat exchange with the surroundings. In reality all
compressor processes will fall between these two.
This generalized process is called polytropic. The
polytrop follows the law:

p-V"=constant

By giving “'n” suitable values the polytrop will in-
clude all the four basic processes described above.
n=0
n=1

n=K
n=w

represents the isobar

represents the isotherm
represents the isentrop
represents the isochor.

2.6.6 Technical compression work

Diagram 2:9 shows a compressor cylinder with
self-acting valves. Air or gas is aspirated from pipe
“a”, compressed, and discharged to pipe “b’’. The
suction valve opens when the pressure in the cylin-
der space “'¢” drops below that in the suction pipe,
and the discharge valve opens when the pressure
inside the cylinder exceeds that in the discharge
pipe. The pV-diagram shows that when the piston
moves to the right, air is drawn in at a pressure p,
until the piston reaches the extreme right hand

position. When the piston returns, the suction
valve closes and the air is compressed until it
reaches pressure p, existing in the discharge pipe.
The discharge valve opens and air is delivered at
constant pressure until the piston reaches the ex-
treme left position.

If there is a vacuum on the right hand side of the
piston the work used may be calculated:

the displacement work delivered by the gas drawn
in

Wii=p,'V,
the compression work added to the gas
Wi ,=[p-dV

the work required to move the air against the dis-
charge pressure

Wi 3=—p,-V,
the pressure change
W3_4=0

The sum of these four works is called the technical
work of the process

W= IP'dV“Pz'V2+P1'V1
1
This work is equal to the area 1-2-3-4 labelled in
the figure and can thus also be expressed as an
integral of dp,
2

We=— [V-dp J

v

Diagram 2:9 Theoretical compression process (no
mechanical losses, no clearance volume)
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The technical work remains unchanged if a con-
stant pressure, instead of a vacuum, exists on the
right hand side of the piston, as the works of this
constant pressure cancel each other out when the
piston moves to the right and back again. With
double-acting pistons the technical work spent on
both sides of the piston has to be added.

The amount of work depends principally on the
compression line 1-2.

Isothermal compression gives
W.=—m-R-TiIn (p,/p;)

or if the natural logarithm is replaced by Brigg’s
W,.=-2.303-m-R-T,-log (p./p,) or
W,=—2.303-p,- V4 log (paip,)

Polytropic compression gives
(n— l)ﬂ‘n
We==piVinln=1)[(palp1) 1]

The discharge temperature is:
(n—1)/n
T,=T, '(."’2:"[71)

If n in the equations above is replaced by the
isentropic exponent, the isentropic work of com-
pression and the isentropic discharge temperature
are obtained.

From the formulae above it can be seen that the
required technical work of compression depends
only on the product p-V=m-R-T and on the
pressure ratio p,/p ;. Compression of one kilogram
of air at +20°C requires the same amount of work
from 1 to 10 bar as from 10 to 100 bar, except for
small deviations caused by the fact that the air is
not a perfect gas.




